

Please write clearly in block capitals.	
Centre number Candidate number	
Surname	_
Forename(s)	_
Candidate signature I declare this is my own work.	_ ,

GCSE MATHEMATICS

Foundation Tier Paper 3 Calculator

F

Monday 10 June 2024

Morning

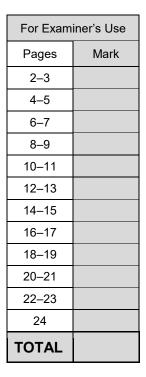
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

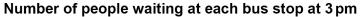
Instructions

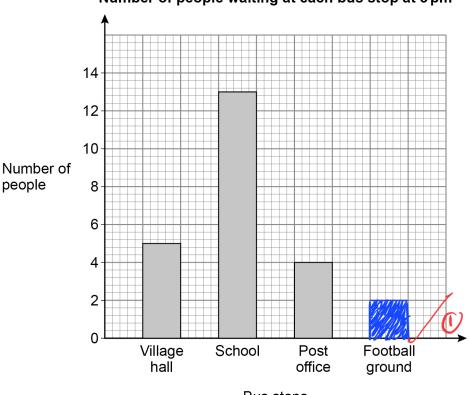

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Advice


In all calculations, show clearly how you work out your answer.



Answer **all** questions in the spaces provided.

1 A village has four bus stops.

The bar chart shows information about the people at the bus stops at **3 pm** one day.

Bus stops

1 (a) Two people were at the Football ground bus stop.

Show this information on the bar chart.

[1 mark]

1 (b) How many more people were at the School bus stop than at the Post office bus stop?

[1 mark]

Answer _____

2 Here are four temperatures in degrees C

	bo

Do not write outside the


– 5	3	-7	-1

Write the temperatures in order, starting with the coldest.

[2 marks]

3 Here are the first three terms of a linear sequence.

3 (a) Write down the next term.

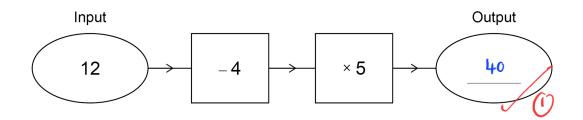
[1 mark]

3 (b) Describe the term-to-term rule.

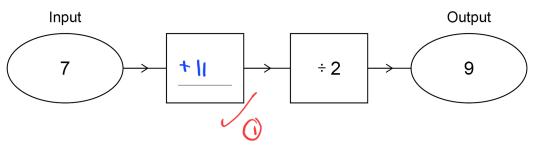
[1 mark]

Term-to-term rule +6

6


					Do not w
Luca spen		h 1 coins			box
	e exact amount wit	11 4 COIIIS.			
List the co	ins he uses.			[2 marks]	
	Eo o	lon	Ιο ρ	10 /	
А	nswer 50 p	lo p		1p	
				\Q	
Complete	ooob statement usi	ag ana of those	ovmbolo		
Complete	each statement usi	ng one or these	symbols.		
	<	=	>		
				[3 marks]	
	2.54	>	2.508		
	-				
	0.25		1.		
	_	/	4		
		<i>J</i> ($\frac{5}{2}$		
	2	4	$\frac{5}{2}$		
	-	<i>U</i>	<u>(1)</u>		

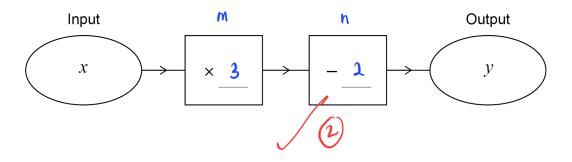
6		Here are three solids.			Do not write outside the box
		Cube	Square-based pyramid	Cone	
6	(a)	How many faces does the	e cube have?	[1 mark]	
		Answer	6		
6	(b)	How many edges does th	ne square-based pyramid have?	[1 mark]	
		Answer	8		
6	(c)	How many vertices does	the cone have?	[1 mark]	
		Answer	1		


7 (a) Here is a number machine.

Complete the number machine.

[1 mark]

7 (b) Here is a different number machine.


Complete the number machine.

[1 mark]

7 (c) Here is a different number machine.

Do not write outside the box

When x = 5 y = 13

and

when x = 10 y = 28

Complete the number machine.

[2 marks]

$$(2)$$
 - (1) : $10 \text{ m} - 5 \text{ m} = 28 - 13$

$$m = 3$$
 $n = 5(3) - 13 = 2$

Turn over for the next question

- 8
- A pack of pegs costs 40p
- A bar of soap costs £2.20
- A basket costs £7

Dan buys two packs of pegs, one bar of soap and one basket.

What fraction of the total cost is the cost of the basket?

[3 marks]

Total cost:
$$2(£0.40) + £2.20 + £7$$

= £0.86 + £2.20 + £7

Fraction of basket's price to total price:

Answer 10

9

Calculate $\sqrt{625} + 7^3$

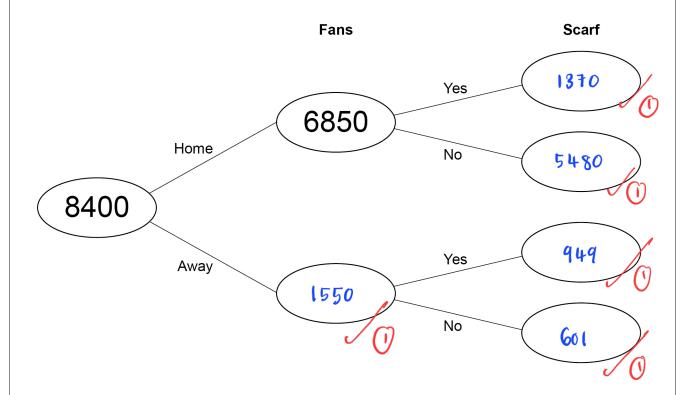
[2 marks]

$$\sqrt{625} = 25$$
, $7^3 = 343$
25 + 343 = 368

Answer 368

10 8400 fans go to a rugby match.

6850 of the fans support the **Home** team.


The remaining fans support the **Away** team.

20% of the **Home** fans wear a scarf.

2319 of all the fans wear a scarf.

Complete the frequency tree.

[5 marks]



Turn over for the next question

Do not write outside the box

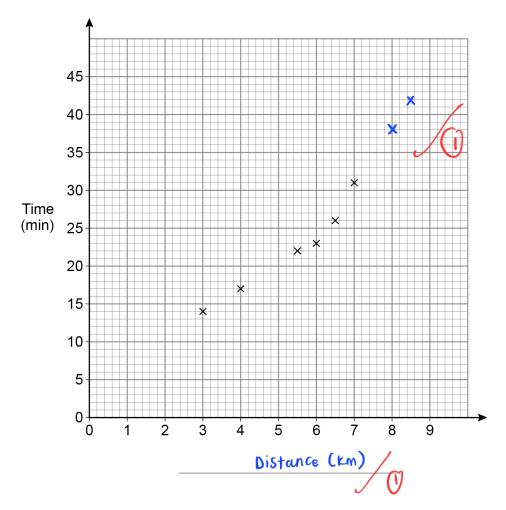
11 (a) Work out the coordinates of *B*.

[1 mark]

11 (b) Point *C* is reflected in the line x = 6 to point *D*.

Work out the coordinates of D.

[1 mark]


12 Liz records the distance of some runs and the time each run takes.

Do not write outside the box

Distance (km)	3	4	5.5	6	6.5	7	8	8.5
Time (min)	14	17	22	23	26	31	38	42

The scatter graph shows **some** of the information from the table.

Running distances and time taken

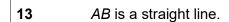
12 (a) Complete the graph by adding the missing label and plotting the two missing points. [2 marks]

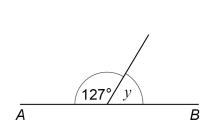
12 (b) Describe the correlation shown in the scatter graph.

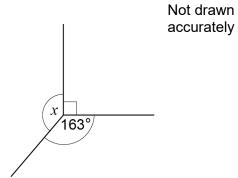
[2 marks]

Type of correlation

ositive


/0


Strength of correlation


Storno

Is y half of x?

Tick a box.

No

Show working to support your answer.

[3 marks]

$$x = 360^{\circ} - 90^{\circ} - 163^{\circ}$$

$$\frac{\chi}{2} = \frac{107}{2} = 53.5^{\circ}$$
.

y is not half of x.

14 Multiply out 3(2x + 8)

[2 marks]

Answer 6 x + 24

15 Complete these statements.

[3 marks]

$$\begin{array}{cccc}
 & 4x & + & 5x & = & 9x \\
\hline
 & 0 & & & & & \\
\end{array}$$

$$y \times y = y^2$$

$$3t$$
 $2t$ $=$ t

Turn over for the next question

16 Tins of beans are sold in shop A and shop B.

Shop A

1 tin 64p

Buy 4 tins for the price of 3 tins

Shop B

1 tin 62p

Pack of 3 tins £1.70 10% reduction in price on all **packs**

At which shop is it cheaper to buy 20 tins? State how much cheaper.

[5 marks]

Shop B: 6 sets of pack of 3 tins and 2 sets of 1 tin

\$10.42 - \$9.60 = \$0.82

Shop ____

Cheaper by

£0.82

17 (a) There are 30 students in a class.

12 of the students have school lunch.

Work out the ratio

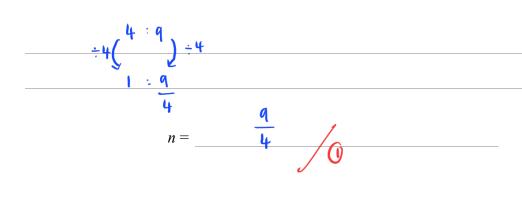
students having school lunch : students not having school lunch Give your answer in its simplest form.

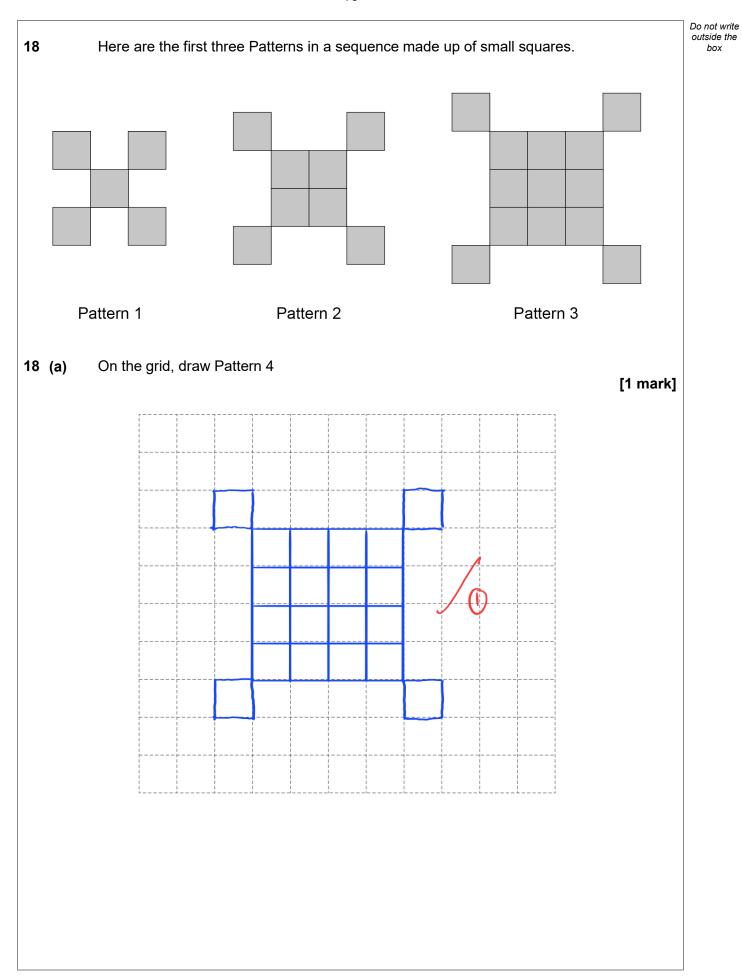
[2 marks]

17 (b) In a different class

students wearing glasses : students not wearing glasses = 3 : 8

What fraction of students in this class wear glasses?


[1 mark]

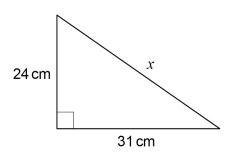


17 (c) The ratio 4:9 is written in the form 1:n

Work out the value of n.

[1 mark]

18 (b) The expression for the number of small squares in Pattern n is $n^2 + 4$


Work out the least value of n for which the number of small squares is greater than 500

[1 mark]

$$n^2 + 4 > 500$$
 $n^2 > 496$

n = 23 (smallest integer after 223...)

19

Not drawn accurately

Use Pythagoras' theorem to work out the value of x.

Give your answer as a decimal.

[3 marks]

$$\chi^{2} = 24^{2} + 31^{2}$$

$$\chi = 24^{2} + 31^{2}$$

$$= \sqrt{1537}$$

$$= 39.2$$

Answer 39.2 cm

Rick claims most of the flats in his 8-floor building are energy efficient. He samples 45 flats from floors 1 to 5 Give a reason why this sample may not be useful in testing Rick's claim. The dota only consists 5 out of 8 firests 21 $3(x-1) \equiv 3x-3$ is an identity. Tick one box. [1 mark] It is true for all values of x It is true for no values of x It is true for no values of x				Do not write
He samples 45 flats from floors 1 to 5 Give a reason why this sample may not be useful in testing Rick's claim. [1 mark] The data only consists 5 out of 8 finors [1 mark] The dota only consists 5 out of 8 finors [1 mark] Tick one box. [1 mark] It is true for all values of x	20	Rick claims most of the flats in his 8-floor building are energy efficient.		
Give a reason why this sample may not be useful in testing Rick's claim. [1 mark] The data only consists 5 out of 8 finors [3 $(x-1) = 3x-3$ is an identity. Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
The data only consists 5 out of 8 finors 21 $3(x-1) \equiv 3x-3$ is an identity. Tick one box. [1 mark] It is true for all values of x It is true for some values of x		The samples 40 hats from hoors it to 0		
The data only consists 5 out of 8 finors 21 $3(x-1) \equiv 3x-3$ is an identity. Tick one box. [1 mark] It is true for all values of x It is true for some values of x		Give a reason why this sample may not be useful in testing Rick's claim.		
21 $3(x-1) \equiv 3x-3$ is an identity. Tick one box. [1 mark]			[1 mark]	
21 $3(x-1) \equiv 3x-3$ is an identity. Tick one box. [1 mark]		The date collisions to the of C. France /		
21 $3(x-1) \equiv 3x-3$ is an identity. Tick one box. [1 mark]		The data only whists is our of a tions		
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x				
Tick one box. [1 mark] It is true for all values of x It is true for some values of x	21	$3(x-1) \equiv 3x-3$ is an identity.		
It is true for all values of <i>x</i> It is true for some values of <i>x</i>				
It is true for all values of x It is true for some values of x		TICK One DOX.	[1 mark]	
It is true for some values of <i>x</i>			[1 mark]	
It is true for some values of <i>x</i>				
It is true for some values of <i>x</i>		It is true for all values of <i>x</i>		
		It is true for some values of x		
It is true for no values of x		The true for come values of x		
It is true for no values of x				
It is true for no values of x		It is two for no values of a		
		It is true for no values of x		

22 Kay hires a digger.

The cost per day is

- £24.50 for the first 5 days
- reduced by 20% for day 6
- the same as day 6 for day 7 onwards.

The total cost is £259.70

For how many days did Kay hire the digger?

You must show your working.

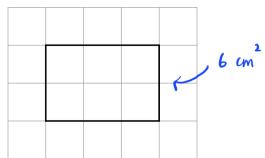
[5 marks]

$$\frac{80}{100} \times $24.50 = $19.60$$

$$\frac{h = 137 \cdot 20}{19.60}$$

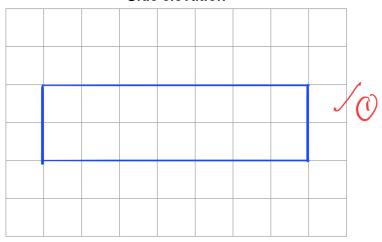
Answer 2

Turn over for the next question


7

The front elevation of a cuboid is shown on this centimetre grid.

Do not write outside the box



The volume of the cuboid is 42 cm³

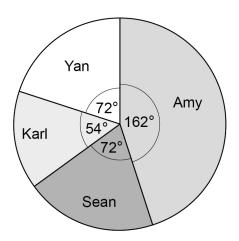
Draw the **side elevation** on this centimetre grid.

[2 marks]

Side elevation

	day, Larrs swims 50 met day, Larrs swims 1.5 kilo	tres in 40 seconds at a consta ometres.	ant speed.
Assume	he swims at the same c	constant speed as on Monday.	
How mar	ny minutes does he swi	im for on Tuesday?	
	Speed = \frac{50 m}{40 s} =	1.25 ms	[5 marks]
	ime on Tuesday:	1500 m = 1.25 m5 1	
		$t = \frac{1500}{1.25} : 1200 S$) min ()
		z 20 Min	
	Answer	20	minutes
	•	at a slower constant speed tha	•
What do	•	at a slower constant speed tha	or on Tuesday?
What do	es this mean about the r		or on Tuesday? [1 mark]
What do	es this mean about the r	number of minutes he swims fo	or on Tuesday? [1 mark] art (a)

It is not possible to say



25 Four people are taking part in a television talent show.

Here are Amy's marks from the 6 judges.

8	9	9	6	9	10

The pie chart represents the phone vote.

Amy's total score is found by

 $4 \times \text{the } \text{mean} \text{ of her marks}$

+

her **percentage** of the phone vote

Work out Amy's total score.

[4 marks]

mean of marks =
$$8+9+9+6+9+10$$
 = 8.5

Percentage of phone vote =
$$\frac{162^{\circ}}{360^{\circ}} \times 100^{\circ}$$
 > 45%

Answer	79

Turn over for the next question

4

House prices on a street increase by 5.1% each year.

Show that after 14 years the house prices on the street will be at least double.

[2 marks]

lot house price be x.

27 Town A has

a population of 84 000 an area of 7 **square miles**.

Town B has a population density of 4695 people per **square kilometre**.

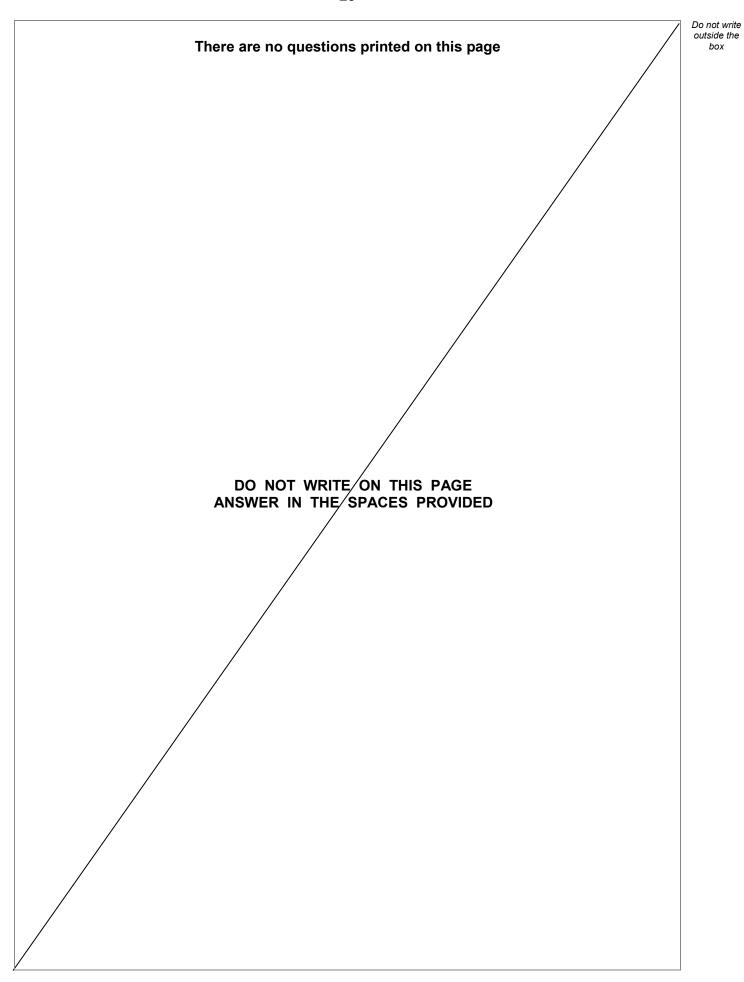
Population density =
$$\frac{\text{population}}{\text{area}}$$

Which town has the greater population density?

Use 1 square mile = 2.6 square kilometres Tick a box.

Town B

Show working to support your answer.


[3 marks]

: Town B has greater population density

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 AQA and its licensors. All rights reserved.

